- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Zijun (1)
-
Goult, Christopher A (1)
-
Gouverneur, Véronique (1)
-
Paton, Robert S (1)
-
Schlatzer, Thomas (1)
-
Yang, Long (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent, bioaccumulative and anthropogenic pollutants that have attracted the attention of the public and private sectors because of their adverse impact on human health1. Although various technologies have been deployed to degrade PFASs with a focus on non-polymeric functionalized compounds (perfluorooctanoic acid and perfluorooctanesulfonic acid)2–4, a general PFAS destruction method coupled with fluorine recovery for upcycling is highly desirable. Here we disclose a protocol that converts multiple classes of PFAS, including the fluoroplastics polytetrafluoroethylene and polyvinylidene fluoride, into high-value fluorochemicals. To achieve this, PFASs were reacted with potassium phosphate salts under solvent-free mechanochemical conditions, a mineralization process enabling fluorine recovery as KF and K2PO3F for fluorination chemistry. The phosphate salts can be recovered for reuse, implying no detrimental impact on the phosphorus cycle. Therefore, PFASs are not only destructible but can now contribute to a sustainable circular fluorine economy.more » « lessFree, publicly-accessible full text available April 3, 2026
An official website of the United States government
